
Complementing Metaheuristic Search with Higher
Abstraction Techniques

Frank R. Burton and Simon Poulding
Department of Computer Science

University of York
YO10 5GH

UK
{frank,smp}@cs.york.ac.uk

Abstract—Search-Based Software Engineering and Model-
Driven Engineering are both innovative approaches to software
engineering. The premise of Search-Based Software Engineering
is to reformulate engineering tasks as optimisation problems
that can be solved using metaheuristic search techniques. Model-
Driven Engineering aims to apply greater levels of abstraction
to software engineering problems. In this paper, it is argued that
these two approaches are complementary and that both research
fields can make further progress by applying techniques from
the other. We suggest ways in which synergies between the fields
can be exploited.

I. INTRODUCTION

Search-Based Software Engineering (SBSE) considers soft-
ware engineering tasks to be optimisation problems [1], [2].
By applying automated and efficient metaheuristic search
algorithms to the optimisation problem, SBSE is capable of
solving engineering problems that may be intractable or too
costly to solve by other means [3].

Model-Driven Engineering (MDE) aims to raise the ab-
straction level used in software engineering to models. The
use of the higher abstraction is intended to permit software
engineering to work on software development projects that
have much greater complexity [4], [5].

In this paper, we argue that these two approaches to improv-
ing software engineering can benefit by applying techniques
from the other, and provide second examples of how this
synergy can be exploited. The first is the use of Domain
Specific Modelling Languages (DSMLs) from MDE to create
better models of software engineering problems and their
solutions to which search may be applied. The second example
is the use of metaheuristic search to help perform model-to-
model transformations when going from the DSMLs contain-
ing the problem domain concepts to the DSMLs containing
the implementation concepts.

II. MODEL-DRIVEN ENGINEERING

Model-Driven Engineering (MDE) aims to deal with com-
plexity in software engineering through use of abstract de-
scriptions of phenomena of interest –viz., models [4], [5]. As
a brief introduction, we are going to explain MDE from two
perspectives: the technique perspective and the methodology
perspective; the first focuses on techniques applied in the use

of MDE, whereas the second focuses on process (e.g., how
techniques are orchestrated).

The first technique that many users of MDE will encounter
is Domain Specific Modelling Languages (DSMLs). A DSML
is a dedicated modelling language that captures the concepts
particular to some domain. This concept is similar to a Domain
Specific Language (DSL) and by using a text-to-model tool
such as XText [6] it is possible to create a corresponding
DSL for any DSML. Each DSML is defined by a meta-model,
which captures the language’s concept and relationships (this
is analogous to an EBNF in the definition of textual lan-
guages). The meta-model expresses these domain concepts
in an object-oriented style, in terms of the allowed classes
and allowed relationships between the classes. Models created
solely from the classes and relationships found within a meta-
model are said to conform to that meta-model [7].

Another common technique used in MDE is model-to-
model (M2M) transformation. These specify how to transform
models that conform to one meta-model into new models that
conform to a different meta-model1. The transformations are
specified in terms of the meta-models and not the models;
therefore it is required that the models to conform to the
meta-models. Other common techniques include model-to-text
transformation, automatic GUI generation [8], model merging
tools and model validation tools.

The methodology perspective on MDE is best explained
via an example. In Figure 1 we show a hypothetical MDE
toolchain for translating C++ source code into Java source
code. The toolchain is made up of several different MDE tools
working together to perform the translation. The toolchain
firstly relies on the C++ & Java meta-models. These meta-
models need to be written to capture the concepts and rela-
tionships between concepts found in their respective language.
In this case the meta-models could simply capture the abstract
syntax for each language. The majority of the hard work in
creating this toolchain is most likely to be found in creating the
model-to-model transformation between the two meta-models
since the transformation needs to map every concept in the
C++ language to a concept within the Java language. Finally,

1This is, technically, a specific yet common instance of M2M; in general an
M2M transformation may take many input models and produce many output
models.

978-1-4673-6284-9/13/$31.00 c© 2013 IEEE CMSBSE 2013, San Francisco, CA, USA45

Fig. 1. C++ To Java MDE Toolchain

a text-to-model transformation is needed to read C++ source
code into a model conforming to the C++ meta-model and a
model-to-text transformation is needed to write out the content
of the Java model to Java source code.

Normally, the intention is not to translate between two
general purpose languages. The intention is that the first
language in the toolchain is a dedicated DSML for the problem
using the concepts found in the problem space and these will
later on be translated by a model-to-model transformation to
concepts that can be implemented.

III. SEARCH-BASED SOFTWARE ENGINEERING

To apply Search-Based Software Engineering (SBSE) to a
software engineering problem requires three components: a
representation for candidate solutions to the problem, a fitness
metric that evaluates how ‘good’ a candidate solution is, and
an optimisation method. The latter is typically a metaheuristic
search algorithm: local search methods such as hill climbing
and simulated annealing, or population-based methods such
as genetic algorithms and ant colony optimisation. The search
method uses the fitness values of ‘current’ candidate solutions
to guide the derivation of even fitter candidates until a suitable
solution to the problem is found.

Theory currently offers little guidance as to the choice of
representation, fitness metric, and search method. Therefore
such choices are often made empirically on a problem-by-
problem basis.

A particular concern is the representation should be capable
of encapsulating all the relevant features of possible solutions
to the problem under consideration, but at the same time,
the representation should remain amenable to search. For
example, many search methods are often more effective when
small changes in the search representation correspond to small
changes in the semantic interpretation of that representation—
a property known as locality [9]. Similarly, the fitness of a
candidate solution is assessed in the context of a specific prob-
lem instance, and this requires a mechanism for representing
the often complex problem instance appropriately.

We argue that MDE can assist with the choice of suit-
able problem and solution representations. Models enable the
representation of highly structured, complex problems and

solutions in a principled and consistent manner. MDE toolsets
can facilitate the manipulation of the representation during
the search process and provide mechanisms for users (and
researchers) to interact with, and visualise, candidate solutions.
By applying the representation at a higher level of abstraction,
models may enable to empirical evaluation and selection of a
suitable representation for a wider range of related problem
domains, rather than on a problem-by-problem basis.

IV. USING DOMAIN SPECIFIC MODELLING LANGUAGES
AS A PROBLEM REPRESENTATION

A basic technique in MDE is the creation of DSMLs
to represent the concepts and relationships found within a
domain. A useful synergy between the two research fields
is using DSMLs to create the problem representations of
software engineering problems.

The advantage of this approach is that DSMLs are designed
specifically for this purpose and are potentially able to cap-
ture the internal structure of software engineering problems
better than the existing techniques within SBSE. This is best
evidence by demonstration; we are going to show this on a
software engineering problem taken from the SBSE literature:
the Next Release Problem [10].

A typical problem formulation of the Next Release Problem
given by Durillo et al [11] is as follows. There is a set C of
customers each with a value to company ci and a set R of
requirements each with a cost rj to implement. Each customer
has a value of importance on each requirement that can be
stored in a matrix vij . Requirements can have dependencies
on other requirements. These requirement dependencies can
be stored in a directed acyclic graph, however this part of the
problem is normally dropped in SBSE work as a simplifying
assumption. The solution to the problem is a binary decision
vector saying if each requirement is to be implemented.

Fig. 2. Next Release Problem DSML

Now to contrast this with using DSMLs, a meta-model for
the Next Release Problem is given in Figure 2. Each customer
has a name and a value to the company and each customer
desires requirements. This is represented by a relationship
rather than a matrix. Each desired requirement has a name and

46

a value to the customer and can depend on other requirements
being fulfilled first. A simple observation made when mod-
elling the domain is that each requirement is implemented by
some software artefact that represents some amount of work
being done to the software code base. Each software artefact
has costs to implement that can be of various types including
financial, man-hours, certifications costs, etc.

A solution to the Next Release Problem is given by another
DSML defined as follows:

Fig. 3. Next Release Problem Solution DSML

This DSML contains the overall satisfaction for the com-
pany, each individual customers satisfaction, the wanted re-
quirements and the chosen software artefacts. It also con-
tains the dependencies between the requirements and software
artefacts showing the solution’s internal structure. The two
problem representations are for the same problem and are
subjectively similar. The first is defined in terms of vectors
and matrices and the second is defined in terms of meta-
models for DSMLs. The main question is how more expressive
is the DSML representation over the vector and matrices
representation. The first improvement in expressiveness is
that partial requirement fulfilment (a challenge stated in [12])
can be supported by simply adding a single attribute called
Percentage to the ProvidesRequirement class. This is much
easier to do than in the vector and matrix case since the
problem domain has being properly modelled. In the DSML
representation, different software artefacts can produce the
same requirements, this corresponds to supporting trade-offs in
the software architecture. A more emergent property from us-
ing the DSML representation is that satisfying one requirement
can change the costs of satisfying other requirements. This is
because the software artefact used to satisfy a requirement can
have dependent software artefacts that represent common work
shared with other software artefacts and these can be used
in satisfying other requirements at reduced cost. Requirement
dependencies from a MDE perspective are a simple model
query and therefore do not need to be removed as a simplifying
assumption.

The point of this is that a simple DSML representation
can produce a more expressive problem representation for a
software engineering problem then can be done normally. Of
course, with the use a lot of vectors and matrices the expres-
siveness of the DSML could be reproduced however unlike the
DSML representation it would be highly complicated, tedious
and error prone to do.

The other major benefit from the use of DSMLs comes
from being able to exploit MDE tool support. The two DSMLs
shown here with a small amount of extra annotation can be
used to automatically generate GUI displays using a tool such
as EuGENia [8]. In the NRP case, this means that the solutions
can be visualised as directed acyclic graphs, containing both
the fulfilled requirements and the selected software artefacts,
giving valuable feedback on the solutions to the stakeholders.

Lastly, to show that search can be applied to this type of
DSML representation, our previous work [13] applies MDE
to the Multi-objective Next Release Problem [14] and all the
DSMLs used here can be converted by simple model-to-model
transformations into DSMLs used in that work.

V. MODEL-TO-MODEL TRANSFORMATIONS THAT
INHERENTLY INVOLVE SEARCH

An objective of MDE is that it will allow the stakeholders of
a problem to define their problem using the domain concepts
they naturally describe their problem in rather than using the
implementation specific concepts found in a potential solution.

This can be done in MDE by providing DSMLs using
the stakeholder domain concepts and by providing DSMLs
using the implementation specific concepts. Then providing
model-to-model transformations to convert the stakeholders
domain concepts into the concepts found in the specific im-
plementation technology. This shortens the distance between
the problem and the implementation domain [15].

Changing concepts in the problem domain to concepts in the
implementation domain is normally done by directly mapping
concepts from one domain onto concepts in the other domain.
However, if the problem domain is sufficiently complicated
and abstract enough, it can easily become the case that such
a direct mapping is no longer possible. A practical example
of this can be found by looking into work by Thompson et
al [16]. In their work they are attempting to design a mo-
bile phone application that performs certain functions whilst
meeting both performance and power constants. They have to
make multiple design choices in going from their problem to
their implementation domain such as the software architecture
design, the choice of networking protocols and accuracy vs
performance trade-offs in their implementing functions [16].
There is clearly no single mapping in their work from problem
to implementation domain and not all mappings are viable due
to the performance and power constants on the mobile phone
hardware.

To demonstrate this point lets look at a basic example
of how a problem level DSML can require search when
transformed into an implementation level DSML. In Figure 4,
an example DSML is given that describes an architecture

47

containing connected nodes with processing power and data
storage. This can be assumed to represent the layout of either a
data centre or an embedded device. The DSML also describes
a set of software processes to be allocated to nodes with the
restriction that the nodes they are allocated to are all within a
certain latency from each other.

Fig. 4. Problem Level DSML

The implementation level DSML in Figure 5 only needs to
know the nodes to allocate to each of the software processes.

Fig. 5. Implementation Level DSML

Performing a model-to-model transformation from the prob-
lem level DSML to the implementation level DSML is no
longer a case of simply directly mapping concepts in the prob-
lem level DSML to the concepts in the implementation level
DSML. Depending on the model created from the problem
level DSML there can be multiple or no corresponding models
within the implementation level DSML that satisfy the prob-
lem level DSML. Each possible model in the implementation
level DSML needs to be checked that it does not allocate less
processing power or less data storage to a software process
than is needed and all the allocation of nodes are within the
required latency of the software process.

An effective way to solve problems like this is an open
research problem. Hopefully, a technique can be developed
for dealing with these types of model-to-model transformation
where there are no direct mappings between the DSMLs
but instead the problem is to search for a model in the
implementation level DSML that meets the constraints and
requirements specified by the problem stakeholders in the

problem level DSML. This would almost certainly require the
use of metaheuristic search techniques.

VI. CONCLUSIONS

In this position paper, we have argued that there are mul-
tiple places where SBSE and MDE can benefit from using
techniques from the other. This includes the use of DSMLs to
create better problem representations for software engineering
problems and the open research area of using metaheuris-
tic search to tackle complex model-to-model transformations
where direct mappings cannot be applied.

ACKNOWLEDGEMENTS

This research was supported by MooD International and the
EPSRC under the Large Scale Complex IT System project,
EP/F501374/1.

REFERENCES

[1] M. Harman and B. Jones, “Search-based software engineering,” Infor-
mation and Software Technology, vol. 43, no. 14, pp. 833–839, 2001.

[2] J. Clark, J. J. Dolado, M. Harman, R. Hierons, B. Jones, M. Lumkin,
B. Mitchell, S. Mancoridis, K. Rees, M. Roper, and M. Shepperd,
“Reformulating software engineering as a search problem,” IEE Proc.
— Software, vol. 150, no. 3, pp. 161–175, 2003.

[3] M. Harman, “The current state and future of search based software
engineering,” in Future of Software Engineering. IEEE Computer
Society, 2007, pp. 342–357.

[4] D. Schmidt, “Model-driven engineering,” IEEE Computer, vol. 39, no. 2,
p. 25, 2006.

[5] J. Bzivin, “Model driven engineering: An emerging technical space,” in
GTTSE 2006, pp. 36–64.

[6] S. Efftinge and M. Völter, “oAW xText: A framework for textual DSLs,”
in Workshop on Modeling Symposium at Eclipse Summit, vol. 32, 2006.

[7] J. Bézivin, “In search of a basic principle for model driven engineering,”
Novatica Journal, Special Issue, vol. 5, no. 2, pp. 21–24, 2004.

[8] D. Kolovos, L. Rose, S. Abid, R. Paige, F. Polack, and G. Botterweck,
“Taming emf and gmf using model transformation,” Model Driven
Engineering Languages and Systems, pp. 211–225, 2010.

[9] F. Rothlauf, Representations for genetic and evolutionary algorithms.
Springer, 2006.

[10] A. Bagnall, V. Rayward-Smith, and I. Whittley, “The Next Release
Problem,” Information and Software Technology, vol. 43, no. 14, pp.
883–890, 2001.

[11] J. Durillo, Y. Zhang, E. Alba, and A. Nebro, “A study of the multi-
objective next release problem,” in Search Based Software Engineering,
1st Int. Symp. on, 2009, pp. 49–58.

[12] Y. Zhang, A. Finkelstein, and M. Harman, “Search based requirements
optimisation: Existing work and challenges,” Requirements Engineering:
Foundation for Software Quality, pp. 88–94, 2008.

[13] F. Burton, R. Paige, L. Rose, D. Kolovos, S. Poulding, and S. Smith,
“Solving acquisition problems using model-driven engineering,” Mod-
elling Foundations and Applications, pp. 428–443, 2012.

[14] Y. Zhang, M. Harman, and S. A. Mansouri, “The multi-objective next
release problem,” in Proceedings of the 9th annual conference on
Genetic and evolutionary computation. ACM, 2007, pp. 1129–1137.

[15] R. France and B. Rumpe, “Model-driven development of complex
software: A research roadmap,” in 2007 Future of Software Engineering.
IEEE Computer Society, 2007, pp. 37–54.

[16] C. Thompson, J. White, B. Dougherty, and D. Schmidt, “Optimizing
mobile application performance with model–driven engineering,” Soft-
ware Technologies for Embedded and Ubiquitous Systems, pp. 36–46,
2009.

48

